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Abstract

An interface tracking method using an unstructured moving mesh has been developed for simulating three-dimensional,
incompressible, and immiscible two-phase flows. The interface mesh is moved in a Lagrangian fashion. A local mesh adap-
tation method is used to capture the changing interface curvature, maintain good mesh quality, and deal with large defor-
mation. The interface is of zero thickness, so the jump and continuity conditions across the interface are implemented
directly, without any smoothing of the properties of the two fluids. This is theoretically beneficial compared to other meth-
ods that allow the fluids’ properties to continuously vary in an interface region. The curvature for interfacial tension cal-
culation is geometrically computed by a least squares parabola fitting method. A mesh separation scheme for interfacial
flows is employed to handle topological transition. The numerical technique is tested and validated by several cases, which
include a two-layer Couette flow, an oscillating droplet surrounded by gas, and a droplet in shear flow. The results
obtained from numerical simulations are found to be in excellent agreement with analytical solutions and experimental
results. A collapsing ligament in a quiescent gas flow and a modulated jet pinching are simulated to show the robustness
of the method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Multiphase flows are of great importance in nature and in engineering applications, but they are notori-
ously difficult to simulate because of the discontinuities across the moving and deforming interface. Numerical
simulations of two-phase flows are especially useful for problems with very small length and time scales, where
it is difficult to perform experimental measurements in detail, such as primary atomization in sprays.
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There are two main approaches to simulating incompressible, immiscible multiphase flow. The first is the
diffuse-interface method, which allows a finite thickness of the interface, and the second is the sharp-interface
method, which treats the interface as a zero thickness surface. The volume of fluid (VOF) method [1], the level
set method [2,3], and the front tracking method [4,5] are schemes in the diffusive-interface category. All these
methods use a fixed grid to solve the governing Navier–Stokes equations with different approaches to locating
the interface, which simplifies dealing with large deformation and changing topology. In the above methods,
however, the jumps in the fluids’ properties and surface tension are usually smoothed in an interface region.
Furthermore, the interface is smeared in VOF, and the level set method has difficulties with mass conservation.
However, the level set method can be used for sharp interfaces when combined with the immersed interface
method [6–8]. The lattice Boltzmann method (LBM) was used by He et al. [9] and Inamuro et al. [10] to sim-
ulate multiphase fluid flows. The interface is tracked by an index function and has a thickness of 3–4 cell sizes.
The surface tension is modeled by incorporating molecular interactions. LBM is an efficient algorithm for sim-
ulating multiphase flows [11]. However, the LBM method is difficult to generalize beyond its domain of valid-
ity and the jump conditions across the interface are not satisfied [1].

The boundary integral method (BIM) [12,13] is in the sharp-interface category. A boundary integral rep-
resentation applies to fluid problems where the governing equations can be formed using Green’s functions.
The boundary integral method is good at accurately and efficiently capturing the interface dynamics, but it
is difficult to apply to more general fluid flows with a finite Reynolds number. Another method that can
also maintain a sharp interface is the interface tracking with moving mesh technique, which is the approach
in this paper. The pioneering work was done by Welch [14] and Hu et al. [15]. Welch could only simulate
small interface deformation due to lack of mesh adaptation schemes. In Hu et al.’s method, if any low
quality mesh elements were detected, then a new mesh would be generated and the solution from the
old mesh would be projected to the new mesh. Obviously, the error due to global projection would be
significant.

Perot and Nallapati [16] and Dai et al. [17,18] used a moving unstructured staggered mesh method to sim-
ulate incompressible free-surface flow. A local mesh adaptation scheme was employed in their work to deal
with mesh distortion. This paper extends Perot and Nallapati [16] and Dai et al.’s work [17,18] to two-phase
flow simulations. The jump and continuity conditions across the interface are carefully handled to achieve
accuracy and stability. Several new mesh adaptation schemes are employed to deal with interface deformation,
and a mesh separation method for two-phase flows is introduced to deal with interface pinching. This paper is
organized as follows: the governing equations and the jump conditions are given in Section 2, and the numer-
ical schemes are presented in Section 3. The mesh adaptation methods are described in Section 4. The mesh
separation scheme is given in Section 5. The method is validated and tested by a number of two-phase flow
problems in Section 6. Conclusions are given in Section 7.
2. Governing equations and jump conditions

The governing equations for incompressible flow in a moving and deforming control volume are
d
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where CV is a control volume, CS stands for the surface of the control volume, u is the fluid velocity, v is the sur-
face velocity of the control volume, n stands for the unit vector of the face normal, f denotes the body force per
unit mass, and the superscript T stands for the transpose. Eq. (1) is a consistency requirement for a moving con-
trol volume, which indicates that the rate of volume change is equal to a closed control surface integral of v.
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Using conservation of mass and linear momentum while considering the surface tension, the continuity and
jump conditions across the interface for incompressible and immiscible two-phase flows are
u1n ¼ u2n ¼ vn; ð4Þ
sust ¼ 0; ð5Þ

spt ¼ �r
1

R1

þ 1

R2

� �
þ s2lðru � nÞ � nt; ð6Þ

l
oui

oxj
þ ouj

oxi

� �
sinj

� �� �
¼ 0; ð7Þ
where r stands for the surface tension coefficient and is assumed to be a constant, R1 and R2 are the principle radii
of the surface, s denotes the tangential unit vector, and st stands for the difference across the interface. Eq. (4)
indicates that the normal velocities of the two fluids across the interface should be continuous and should be equal
to the normal velocity of the moving mesh in order to conserve mass. Eq. (5) is the continuity of the tangential
velocities across the interface due to no-slip boundary condition on the interface. So it can be concluded that
the interface should move with the fluids’ velocities in order to conserve mass and to satisfy the boundary con-
dition on the interface. Furthermore, this indicates that the momentum flux across the interface is identically zero.
Thus the present scheme tends to be robust with large density differences, since the two fluids never co-exist in the
same cell. The jump in pressure should be balanced by the surface tension added to the jump in viscous normal
stresses, which is illustrated in Eq. (6). Eq. (7) is the continuity of viscous shear stresses across the interface.
3. Numerical schemes

3.1. Discretization of governing equations

The numerical scheme solves a discrete stream function formulation of the Navier–Stokes equations where
an exact fractional step method [19] is employed. By solving the governing equations in such a way, conser-
vation of mass is satisfied automatically, and the solution of a Poisson equation for pressure can be avoided. A
brief description of the scheme is given here, and the details of this method can be found in [16].

The governing Eqs. (1)–(3) are discretized as reported previously in [16]
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where Vc denotes the cell volume, Uf is the face flux, U mesh
f stands for the moving mesh flux of the face, rCG

c

denotes the position of the cell center of gravity, Af is the face area, g stands for gravitational force per unit
mass, the superscript n is time step, and the subscripts f and c denote the cell and the face respectively. The
stream function vectors are defined at the edge centers, and using Stokes’ theorem and Gauss’ divergence the-
orem, Uf, and the cell center velocity uc, can be constructed from the stream function vector s by following
equations:
U f ¼
X

face edges

s � tDl; ð11Þ
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1
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X
cell faces

rCG
f U f ; ð12Þ
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where t is the edge tangential unit vector, Dl denotes the edge length, rCG
f stands for the distance vector from

the cell centroid to the face center, and xf is the position vector of the face centroid.
The normal velocity of the mesh faces is required for conservation of momentum in a moving, deforming

control volume, as indicated in Eq. (9). The value of Umesh
f can be found from the displacement of the neigh-

boring nodes [16]
Fig. 1.
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3.2. Continuity in viscous shear stress

The viscous shear stresses across the interface should be continuous, while the viscosity on the interface is
undefined. Tryggvason et al. [20] used the arithmetic average for the interface viscosity for the cases where the
less viscous fluid is expected to have a small effect, and the harmonic mean otherwise. These two methods for
interface viscosity interpolation are tested for a two-dimensional, two-layer Couette flow which is shown in
Fig. 1. Here u is the interface cell velocity and assigned to the theoretical value, and L stands for the distance from
interface cell center to the interface. For the case with viscosity ratio (k = l1/l2) of 0.01 and L1 = L2, the arith-
metic average method gives a relative error of the interface shear stresses of 2450%, while the harmonic mean
method predicts an exact result. However, the harmonic mean method has the relative errors of 65% and
�65% for k = 0.01, l = 5 and k = 0.01, l = 0.2 respectively. Here l is the distance ratio and is defined as l = L1/L2.

A new interpolation of the interface viscosity is proposed to improve the accuracy of the calculation of the
interface shear stresses. The continuity of the shear stresses across the interface (Eq. (7)) is given by
l1

u1 � ui

L1

¼ l2

ui � u2

L2

¼ si ð14Þ
for the case in Fig. 1, where ui is the interface velocity, u1 and u2 are the velocities at the cell centers of each
phase, and they are assumed to be linear in space, and si stands for the interface shear stress. By rearranging
Eq. (14), the following expressions are obtained:
u1 � ui ¼
siL1

l1

; ð15Þ

ui � u2 ¼
siL2

l2

: ð16Þ
Adding the above two equations, the interface shear stress can be expressed as
u2

Fluid 1 : μ1,ρ1

y

u1

Fluid 2 : μ2, ρ2

Interface
x

L1
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Sketch of two-layer Couette flow. L1 and L2 are the distances from the cells’ centers to the interface center. Vectors u1 and u2

s the cells’ velocities.
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si ¼
u1 � u2

L1

l1
þ L2

l2

: ð17Þ
Eq. (17) can be rewritten as
si ¼
1

dx1

l1
þ dx2

l2

u1 � u2

L
; ð18Þ
where L = L1 + L2, dx1 = L1/L, and dx2 = L2/L. Since Eq. (18) predicts the exact interface shear stress for
linear velocity distribution, it is second order accurate. Then the effective viscosity on the interface can be eval-
uated by
li�effective ¼
1

dx1

l1
þ dx2

l2

: ð19Þ
If dx1 = dx2 = 0.5, the harmonic mean method is recovered, and because the distance effects are considered in
this method, a proper name for this method would be ‘‘geometric harmonic mean’’.

3.3. Jump in viscous normal stresses

In the previous section the method to numerically handle the interface shear stress is described. The numer-
ical method for the jump in viscous normal stresses will be discussed in this section. The velocities of the neigh-
boring cells of the interface are used to calculate the jump in viscous normal stresses (as shown in Fig. 2). A
local coordinate system is set up with the interface centroid as the origin, the interface normal as one axis, one
edge direction as the second axis, and the cross product of the face normal and the edge direction as the third
axis. The distance vectors from the surrounding cells’ centers to the interface centroid are represented in this
local coordinate system. All the cells’ velocities are projected to the interface normal direction. Using Taylor
series expansion to first order accuracy for a multivariable function, the interface normal projection of each
surrounding cell velocity can be represented as a function of the distance from the cell centroid to the interface
center. A 3 · 3 linear system about the velocities versus the distance vectors is formed in this local coordinate
system as
ui
cf ¼ uf þ ri

s1
Ds1
þ ri

s2
Ds2
þ ri

nDn; ð20Þ
where uf is the interface normal velocity, ucf denotes the interface normal projection of the cell velocity,
rs1
; rs2

; rn are distances from the cell center to the interface face centroid in tangential and normal directions
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Fig. 2. Interface and surrounding cells.
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respectively, D stands for the gradient of the velocity, and the superscript i denotes the cell index with values of
1, 2 and 3. By solving the above 3 · 3 linear system, the first derivative of the velocity in the face normal direc-
tion can be obtained. The same thing can be done on the other side of the interface. Then the jump in the
viscous normal stresses across the interface (JUMPvisc) can be calculated by
JUMPvisc ¼ 2:0ðlG � DG � lL � DLÞ � Af ; ð21Þ

where lG, DG are the dynamic viscosity and the first derivative of the velocity in gas phase, respectively, while
lL, DL are the corresponding values in liquid phase, and Af is the interface area.

3.4. Stability criteria

The time step is limited by three stability criteria.

(a) CFL (Courant–Friedrichs–Lewy) criterion
Dtcfl 6
CFL � Dx

U
: ð22Þ
(b) Surface tension criterion
The surface tension is solved explicitly, so a criterion for surface numerical stability [17] is introduced as
Dtsurf 6 C

ffiffiffiffiffiffiffiffiffiffi
qDx3

2pr

r
; ð23Þ
where the constant C is of order unity and depends on the numerical method.
(c) Mesh Peclet number criterion

The governing equations are solved by forward-time and central difference in the convection term, so the
time interval is also limited by the mesh Peclet number criterion, which is
2 � CFL 6 Pe 6
2

CFL
: ð24Þ
This defines a DtPe [21].
The time step will be the minimum of the above three time intervals, i.e.
Dt 6 minðDtcfl;Dtsurf ;DtPeÞ: ð25Þ
3.5. Dynamic convergence criteria

The linear system for solving the Navier–Stokes equations is positive semi-definite [22], hence it can be
solved by a preconditioned conjugate gradient (CG) method. The convergence criterion for the CG solver
can be a function of the norm of unknowns with the current guessed values and the norm of the residuals.
One problem with this convergence criterion is that the CG solver will take unnecessary iterations when
the guessed values for the unknowns are almost perfect and the magnitudes of the unknowns are also tiny.
If the solution is varied with time, which is usually the case, then at some times the convergence criterion is
too strict while it is too lax at other times.

A dynamic convergence criterion, which avoids the above problem, is illustrated by a simple case as shown
in Fig. 3. The superscript n stands for time step and the subscript m is CG iteration. The convergence tolerance
for the current time step is based on the solution change of the previous two time steps, i.e.
error totn ¼ funcðDX nÞ ¼ funcðjX ðtn�1Þ � X ðtn�2ÞjÞ for n P 2; ð26Þ

where X stands for the vector of unknowns and varies with time. For the case where the unknown is a function
of space and time, the error tolerance is
error totn ¼ funcðjk~X ðr; n� 1Þk � k~X ðr; n� 2ÞkjÞ for n P 2; ð27Þ
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Fig. 3. Dynamic convergence criterion. The superscript n stands for time step, and the subscript m denotes CG iteration. The black dots
are the true solutions, and the triangle denotes the solution of each CG iteration.
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where j j is the absolute value, i i denotes the norm, and n stands for the time step.

3.6. Surface tension

A least squares parabola fitting in a local coordinate system is used to calculate the effective curvature of the
interface. The parabola is fitted in a form of Eq. (28), and the curvature is calculated via Eq. (29). The surface
tension is implemented in the pressure boundary condition on the interface. The details of this method are
given in [17]
zðx; yÞ ¼ ax2 þ by2 þ cxy þ dxþ ey þ f ; ð28Þ
1

Reffective

¼ � að1þ e2Þ � 2cdeþ bð1þ d2Þ
2ð1þ d2 þ e2Þ

3
2

: ð29Þ
3.7. Periodic boundary condition

In some two-phase flows, a periodic boundary condition is needed, such as a two-layer Couette flow and a
droplet in shear flow. In order to implement the periodic boundary condition, identical surface meshes are
created initially on the boundaries, which is demonstrated in Fig. 4, where a 2D mesh is shown. Nodes
a,b, . . . , f on the right side of the domain are identical to nodes A,B, . . . ,F on the left side and are offset by
the periodic length of the domain along with the edges and faces. The elements (nodes, edges, faces, ghost
cells) and their connections on the right side are deleted. The interior elements which are connected to the
deleted elements are reconnected to the corresponding elements on the left side. The boundary elements on
the left side (except the ones that belong to the upper and lower walls) become interior elements. When using
this approach there will be no left side and right side boundaries, and thus the domain is periodic. For exam-
ple, when nodes (edges) a and b, and face ab of cell abi1 are deleted, then node i1 connects nodes A and B

respectively, and finally cell abi1 is replaced by cell ABi1, and faces ai1 and bi1 by Ai1 and Bi1, respectively.

4. Mesh adaptations

Edge bisecting, collapsing, and swapping are used together with an optimization-based smoothing method
to achieve a good mesh quality for simulating the free-surface flow [17,18]. Special care should be taken for
distributing the fluid properties to new cells to avoid mixing phases for interface edge bisecting and collapsing.

As the interface deforms, some interface edges may become extremely long compared to local length scales.
The angles opposing these edges may be very large (usually greater than 120�) thus causing poor quality cells
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Fig. 4. Schematic representation of the periodic boundary condition. Nodes a,b, . . . , f on the right side are identical to nodes A,B, . . . ,F

and are offset by the periodic distance along with the edges and faces. The boundary elements on the right side are deleted, and then the
interior cells with deleted elements are connected to the corresponding elements on the left side.
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to appear. Fig. 5(a) shows this situation where angles ADC and ABC are very large and other angles of the two
neighboring faces on the interface are very small (usually less than 30�). A 4–4 flipping (as shown in Fig. 5),
which disconnects edge AC and then connects node D and B to form a new edge BD, is employed to obtain
better mesh quality. The angles of these two faces (as shown in Fig. 5(b)) are now very near to 60�. An equi-
lateral triangle is considered the best quality surface mesh. This flipping is only used for two adjacent faces
with a large enough face dihedral angle (usually greater than 170�) in order to conserve mass and preserve
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D
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C

Interface

T
T

A

D

C

B

R

Interface

ba
Fig. 5. Sketch of 4–4 flipping. Edge AC is removed and replaced with edge BD to improve the mesh quality. Tetrahedra ABCT, ADCT,
ABCR, and ADCR are replaced by tetrahedra ABDT, CBDT, ABDR, and CBDR.
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the interface shape. Fig. 6 shows a case where there is a huge mass loss and interface shape alteration. The face
dihedral angle of this case is 90�.

This 4–4 flipping can only be applied to the case where exactly four cells sharing an interface edge with two
cells at each phase. Fig. 7 shows a method of edge swapping for an interface edge with more than 4 cells inci-
dent. Edge AB is bisected first followed by edge contraction on edge CO to node C. Finally edge AB is replaced
by edge CD, and there are now four cells sharing edge CD.

However, some other interface edges may become increasingly short, thus limiting the time step and also
causing poor quality cells. Edge contraction is used to improve mesh quality by removing the tiniest edge,
but in some cases the edge contraction cannot be done directly. Fig. 8(a) shows a case where no direct edge
contraction can be applied to edge EF [23]. An indirect way for edge EF contraction is shown in Fig. 8(b)–(d),
where only faces and edges are shown. Edges TE and TF are split first, then the edge contractions to node O
A

S
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B

C

D

T

A

A B

B

C

C

D

D

T

T

S

S

R

R

Edge bisection
on AB

Edge collapse on 
CO to node C

O

Fig. 7. Edge swapping for the interface edge with more than four surrounding cells. Initially, tetrahedra ACBS, ABST, ADBT, ACBR,
and ADBR are incident to edge AB. First, edge AB is split by node O. The above tetrahedra are split by five new faces SOC, SOT, TOD,
ROD, and ROC. Then, edge CO collapses to node C. Only four tetrahedra ADCT, BDCT, ADCR, and BDCR are incident to edge CD

after the operations. Tetrahedra ACST and BCST do not share edge CD.
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are applied to edges OR and OS, and finally edge EF can collapse successfully. An edge contraction can also
be applied to edge OE (F) to improve the mesh quality greatly.

5. Mesh separation

In many multiphase flow applications, such as sprays and ink jets, droplets are formed. In order to handle
the topological changes of the cases where the interface breaks, mesh separation is introduced. The cutting
position where the neck of the interface will break is usually located by either the physics of the problem
or a marker function [24]. This cutting position will be the datum for determining two cutting planes, and
the region in between these two cutting planes is defined as the conversion region. In Fig. 9(a), the width
of the conversion region is approximately one diameter of the neck region, and two cutting planes are shown.
The liquid cells inside the conversion region are converted to gas cells by changing the physical properties of
these cells. The liquid cells are shown in gray and gas cells in green in the figure. The elements (faces, edges,
nodes) on the two new created interfaces are converted to the interface elements. This conversion can be done
by changing their boundary markers. These two new created interfaces are usually not smooth, which can be
seen in the right figure of Fig. 9(a). Special treatments on these two interfaces are needed in order to continue
numerical simulation. A projection of all nodes on these two new interfaces to local half spheres is performed,
and then smoothing and flipping are used to achieve good mesh quality. The new created interface before and
after smoothing is shown in Fig. 9(b). The numerical simulation can be restarted from this point. Due to the
conversion of liquid cells to gaseous elements, this mesh separation scheme causes mass loss in the liquid phase
and mass gain in gas side. The mass error can be kept small by only applying this mesh separation technique to
a very thin neck region.

6. Numerical results

Several tests were performed to demonstrate the accuracy and robustness of the scheme. The numerical
results are compared with experimental and theoretical solutions. In particular, a two-layer Couette flow, a
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b
Fig. 9. Mesh separation in two-phase flow. (a) Before and after conversion (gas is shaded in green, liquid in gray). (b) Before and after
projection and smoothing (only liquid is shown). (For interpretation of the references in color in this figure legend, the reader is referred to
the web version of this article.)
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droplet oscillation in a gaseous flow, and a droplet in a shear flow are simulated as tests of accuracy. A lig-
ament end-pinching in a quiescent flow is simulated to illustrate the ability of the scheme to deal with large
deformation. A modulated jet pinching off is presented to show the robustness of the method to handle topo-
logical transitions.

6.1. Two-layer Couette flow

A three-dimensional, two-layer, incompressible, immiscible Couette fluid flow in a periodic domain (as
shown in Fig. 10) is simulated. The geometric harmonic mean method is used for calculating the interface
shear stress. The periodic boundary is enforced on the left and right sides of the domain. The upper wall is
moving at velocity of U1 and the lower wall is at rest. The two sides are non-slip walls. The viscosity ratio
k is 0.1 and Reynolds number, which is defined in Eq. (30), is 2.7. The theoretical value of the interface velocity
at the steady state is 0.184 m/s, while the numerical simulation predicts the average of the interface velocity of
0.182 m/s. The initial and the steady state velocity profiles are shown in Fig. 11. Here only the velocities on the
right side of the domain are displayed for simplicity. The jump of the first derivatives of the velocities is extre-
mely sharp, which can be seen clearly in Fig. 11(b)



Interface

h

l

w

h1

h2

Velocity
Fluid 1 : U1 1 1

Fluid 1 : U2 2 2

Fig. 10. Sketch of a three-dimensional two-layer Couette flow.

0

0

0

0

Fig. 11
shown

772 S. Quan, D.P. Schmidt / Journal of Computational Physics 221 (2007) 761–780
Re1 ¼
q1ðU 1 � U 2Þðh1 þ h2Þ

l1

: ð30Þ
6.2. Droplet oscillation in gaseous flow

A zero-gravity, three-dimensional droplet oscillation surrounded by gas is computed with k = 0.01 and
g = q1/q2 = 0.01. The arithmetic average method is used to evaluate the interface shear stress. The outer
gas is fluid 1 and the liquid droplet fluid 2. Unlike Dai et al. [17], the effects of the surrounding gas are con-
sidered in this simulation. The initial droplet is a prolate ellipsoid with the major axis 5% longer than the
radius of a sphere with an equivalent volume. The viscous droplet experiences a damped oscillation with sur-
face tension as a restoring force. The outer domain is also a sphere and the outer boundary is a slip wall. The
Reynolds number based on the maximum velocity and the properties of the liquid is 12.4. The Ohnesorge
number based on the liquid properties is 0.013.

The comparison is made between the numerical simulation results and Lamb’s analytic solutions in Section
275 and 355 of Lamb [25]. Accordingly, the oscillation period is
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. Velocity distributions for the two-layer Couette flow with k = g = 0.01. Only the velocities on the right side of the domain are
. (a) Initial state with linear velocity distribution. (b) Steady state.
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T ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and the decay factor is
s ¼ R2
0

ðn� 1Þð2nþ 1Þm2

; ð32Þ
where R0 is the radius of the spherical drop, m2 is the kinematic viscosity of the drop, and n is the oscillation
mode number with n = 2 being the lowest mode for an incompressible droplet. The numerical results of drop-
let shape and the velocity field of the whole domain at one quarter period are shown in Fig. 12. The theoretical
period and decay factor are 0.2089 s and 1.034, respectively. The numerical results are 0.2108 s and 1.030. The
relative errors of the period and decay factor are 0.9% and �0.4%, respectively. Fig. 13 shows the comparison
between the theoretical predictions and the numerical results for the droplet oscillation. The numerical results
are in good agreement with the theoretical predictions and compare favorably with the previous numerical
investigations [26]. The mass conservation of our scheme is shown in Fig. 14, and it is clear that the numerical
method causes minimal mass error.

6.3. Droplet under shear

The deformation of a droplet immersed in an immiscible liquid phase, which is a linear shear flow, has been
a subject of a number of studies, both theoretically and numerically [27–30]. The dynamics of a droplet in a
shear flow can be regarded as a fundamental problem in fluid mechanics, which can provide insights to pro-
cesses like blending, emulsion and blood flow. Taylor was the first person to theoretically analyze a droplet
under shear flow. Small deformation of the droplet is assumed in Taylor’s theory. He showed that the defor-
mation factor of the drop is governed by viscosity ratio k and capillary number Ca, which is defined as
. Oscillating droplet surround by gas with k = 0.01 and g = 0.01. An xy plane slice at a quarter of the period is shown. The black
notes the droplet shape. The velocities are colored by their x components. (For interpretation of the references in color in this figure
, the reader is referred to the web version of this article.)



Fig. 13. Period and amplitude decay history of the oscillating droplet with k = g = 0.01.

Fig. 14. Mass conservation of the oscillating droplet with k = 0.01 and g = 0.01. The relative error of mass is based on the initial value.
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Fig. 15
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Fig. 16. Ligament end-pinching in a gaseous flow at different stages, k = 0.01 and g = 0.01. (a) t = 0.0, (b) t = 55.6, (c)

t = 77.8,

(d)

t = 89.0, (e)

t = 133.4, (f) t = 211.2, (g) t = 289.1.
Ca ¼ lR0 _c
r

; ð33Þ
where R0 is the radius of the undeformed droplet, _c stands the shear rate, and r is the surface tension coeffi-
cient between the two immiscible fluids. The deformation factor D is
D ¼ L� B
Lþ B

¼ Ca
19þ 16k
16þ 16k

; ð34Þ
where L is the longest axis length and B is the shortest axis length of the droplet.
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. Droplet under shear. (a) Initial state. Only the upper and lower walls have velocities. The droplet is initially at rest. (b) Steady
n enlarged view of the droplet and the liquid phase velocities in an xy plane are shown.
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An initially spherical droplet immersed in a shear flow was computed numerically, and the harmonic mean
method is used to calculate the interface shear stress. The whole flow field is initially at rest except for the
upper and lower walls which have velocities with the same magnitude but opposite direction as shown in
Fig. 15(a). The viscosity ratio of the two fluids is 2.0, and the capillary number Ca is 0.05. The deformation
factor evaluated by Eq. (34) is 0.053, while Taylor’s experimental result [28] gives 0.07. The numerical simu-
lation predicts the deformation factor as 0.076. Fig. 15(b) shows the steady state of the droplet under shear in
a yz plane slice with the droplet velocity.

6.4. Ligament end-pinching in a gaseous flow

A ligament collapsing in a gaseous flow is simulated to show the ability of the numerical schemes to handle
large deformations. The interface shear stress is evaluated by the arithmetic average method. The flow field is
entirely driven by surface tension because the initial flow field is quiescent. The ligament is located in the center
of the outer box that is filled with gas. The boundary conditions for the outer box are slip walls. The ligament
is 7 diameters in length with the radius R0 of 0.2 mm. The Ohnesorge number based on the diameter and the
suspending fluid is 0.04. The viscosity and density ratios of the two fluids are 0.01. Fig. 16 shows the ligament
collapsing at different times. Time is made dimensionless by the time scale tc = (1 + k)R0l/r (the suspending
fluid viscosity is used). The flow field at t = 55.6 is given in Fig. 17. There are four vortex rings in the flow field,
while no vortex ring was observed in Dai and Schmidt’s single phase simulation [18]. The two inner vortex
rings result in a neck region. The ligament eventually collapses to a spherical droplet, and its energy is damped
out by the viscosities of the two fluids. The viscosity ratio is much greater than unit and the length ratio is
small, and this guarantees no breakup in this ligament pinching process [31].

6.5. Modulated jet pinching

Round liquid jets ejecting from a nozzle and flowing into a gaseous environment are very important in a
number of industrial applications, such as ink jets. A liquid jet with a nozzle outlet flow velocity that decreases
Fig. 17. Flow field of the ligament pinching at t = 55.6. An xy plane slice is shown. The black line denotes the interface. The velocities are
colored by their axial components. k = g = 0.01. (For interpretation of the references in color in this figure legend, the reader is referred to
the web version of this article.)



Fig. 19. Formation of a droplet, k = g = 0.02, colored by radius. (a) Wei = 12.5. (b) Wei = 20.0. (For interpretation of the references in
color in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 18. Modulated jet: (a) initial shape and velocity; (b) nozzle exit velocity versus time.
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Fig. 20. Velocity profiles of the modulated jets, k = g = 0.02, colored by velocity magnitude. (a) Wei = 12.5, T = 19.3. (b) Wei = 20.0,
T = 22.6. (For interpretation of the references in color in this figure legend, the reader is referred to the web version of this article.)
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linearly with time is simulated to show the robustness of the methods in handling topological transitions. In
this simulation, the harmonic mean method is used to calculate the interface shear stress. Gravity forces are
not considered in the simulations. Initially, the liquid jet is a cylinder with a half sphere on its end, and the
liquid has a uniform velocity. The length of the cylinder is the same as the radius of the sphere, which is illus-
trated in Fig. 18(a). The nozzle exit velocity decreases linearly with time as shown in Fig. 18(b). Time is non-
dimensionalized by Ue/Re, where Ue is the nozzle initial exit velocity, and Re stands for the nozzle exit radius.
Two simulations are performed to investigate the effect of surface tension. The viscosity and density ratio of
both cases are 0.02. The initial Reynolds number (Rei) based on the nozzle exit diameter, the initial exit veloc-
ity, and liquid properties is 10.0. The initial Weber numbers (Wei) of these two cases are 12.5 and 20.0, respec-
tively. The results from the simulations are shown in Fig. 19. After the nozzle exit velocity becomes zero, there
will be a reverse flow on the nozzle exit side due to surface tension while the leading tip will continue its motion
due to the momentum. This will lead to a neck region that will become thinner and thinner, until finally the
detachment of a droplet will occur.

Because of the low Weber number, the results are sensitive to the value of surface tension. The penetration
distance of the case with higher surface tension is much smaller than that of the case with lower surface ten-
sion. Also, the frontal area of the jet is smaller for the case with lower surface tension. The velocity profiles of
these two cases are illustrated in Fig. 20. It is clear that there are reverse flows on the nozzle exit sides while the
jet tips are still moving to the right.

7. Conclusions and discussion

A moving mesh interface tracking method for three-dimensional, incompressible, and immiscible two-phase
flow has been developed. In this method the interface is treated as a zero thickness surface and also an internal
boundary, so the jump and continuity condition across the interface is implemented directly without any
smoothing of the properties of two fluids. The geometric harmonic mean is used for interface viscosity predic-
tion and is second order accurate. The surface tension is calculated explicitly and acts on the interface, which
evolves with the fluid. This method conserves mass well, which is shown by the droplet oscillation case. The
dynamic convergence criterion, which is based on the change of the previous solutions, makes the simulation
efficient. A local adaptive mesh method is used to handle large deformations, and mesh separation is used to
deal with topological change. Accuracy of the method is validated against analytical and experimental solu-
tions by several cases. The ligament collapsing case shows the ability of the method to deal with large defor-
mation. The modulated jets show the capability of handling topological changes.
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This moving mesh interface tracking method can be used to study the dynamics of a number of interesting
two-phase flow problems, such as droplet acceleration/deceleration, deformation, collisions, and secondary
breakup in sprays, blood flow, shear instability, etc. The dynamics of a droplet impulsively accelerated by gas-
eous flow was studied, and some preliminary results were reported in [32]. The modulated jet pinching case
starts with 30,000 cells, and due to mesh adaptation to capture the local curvature, the case goes up to
80,000 cells when the neck region develops to a radius of approximately 20% of the initial jet’s radius. The
calculations take several minutes for one time step on an AMD Athlon MP 2000+ processor. Parallelization
can significantly speed up the code and will be addressed in the future.
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